Big Data – Data Mining
Interaktiv
Information module:
This graphic shows typical analysis methods of data mining such as clustering, association analysis, and regression analysis based on an animation, an explanatory text, and an example.
Medientyp:
Interaktiv (1,7 MByte)
Letzte Aktualisierung:
27.02.2020
Lizenz:

Dieses Medium steht unter einer CC BY-SA 4.0 international Lizenz.
Was bedeutet das?
So verweisen Sie auf das Medium

Dieses Medium steht unter einer CC BY-SA 4.0 international Lizenz.
Was bedeutet das?
So verweisen Sie auf das Medium
Medienpaket:
Beschreibung:
The animations visualize the analysis methods of clustering (identify similarities and form groups), association analysis (establish dependencies of characteristics and rules by analyzing shopping behavior), and regression analysis (determine correlations from available data by drawing a trend line in a linear regression). An example can be displayed for each data mining analysis method.
Information and ideas:
A trend line is drawn through the accumulation of data points in a linear regression and enables a prediction of the development of the circumstance being examined. In the animation, various possible trend lines are drawn, and the best possible trend line is selected at the end (the most points with the shortest possible distance to the line).
Information and ideas:
A trend line is drawn through the accumulation of data points in a linear regression and enables a prediction of the development of the circumstance being examined. In the animation, various possible trend lines are drawn, and the best possible trend line is selected at the end (the most points with the shortest possible distance to the line).
Dazugehörige Medien:
Lernobjekttyp:
Information sheet
Fächer:
Information and Communication Technology (ICT); Technology
Klassenstufen:
Grade 7 to 9; Grade 10 to 13
Schultypen:
Middle/high school; Vocational training
Stichworte:
Analytical geometry; Computer technology; Data processing; Data protection; Internet; Probability (mathematics); Statistics
Bibliographie:
Siemens Stiftung Media Portal
Urheber/Produzent:
MediaHouse GmbH using material from: Erfurth Kluger Infografiken GbR and irights-lab.de
Rechteinhaber:
© Siemens Stiftung 2019